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Abstract. In this paper, we consider a mathematical model of drug transport in tumors given by a system

of PDEs with random coefficients and initial data. The existence of a strong solution to this model in any

dimension is proved under the assumption that the random coefficients are uniformly bounded. Along with the

finite difference method (FD), we applied a multilevel Monte Carlo method to simulate these random PDEs. We

also derived the overall convergence rate and estimated the total computation cost. Finally, some numerical results

are presented to confirm our theoretical results. Additionally, we provide a comparison between the stochastic

and deterministic approaches for solving the drug transport equation, demonstrating the efficiency of the method

we adopted.
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1 Introduction

In recent years, numerical simulations have increasingly been used to produce predictions of the
behavior of complex engineering and physical systems due to the rapid growth in computational
power, the sources of errors arising in computer simulations can be reduced or controlled, by
now, using some techniques such as mesh adaptivity and the more recent modeling error analysis
(Oden & Prudhomme, 2002; Oden & Vemaganti, 2000; Braack & Ern, 2003), a posteriori error
estimation (Ainsworth & Oden, 2000; Babuska & Strouboulis, 2001; Verfurth, 1996). All this
has increased the accuracy of numerical predictions as well as our confidence in them.

However, in fields such as drug transport in tumors, uncertainties in input data can crit-
ically impact the reliability of predictions. Parameters such as model coefficients, boundary
conditions, and geometric features are often uncertain and can influence the outcomes substan-
tially. Properly managing this uncertainty is crucial for ensuring that numerical predictions are
robust enough to guide clinical decisions and develop effective treatments.
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Figure 1: Multicompartmental models of drug distribution

There are various methods to quantify uncertainty, including worst-case scenario analysis,
fuzzy set theory, probabilistic frameworks, and evidence theory (Hlavacek et al., 2004; Sandeep
et al., 2006). In this study, we focus on a model for drug transport within tumors, employing
a probabilistic approach to handle uncertainties in input data. The model is represented by
a system of partial differential equations (PDEs) which is capable of tracking the amount of
drugs both spatially and temporally through three compartments : the extracellular space, the
cytosol, and the nucleus (see Figure 1). The model is formulated as follows:

∂S1

∂t
= Ds∆S1 − k

′
12S1 +

k
′
21

Vc
S2,

∂S2

∂t
= k12VcS1 − k21S2 − k2S2 − k23S2,

∂S3

∂t
= k23S2 − k3S3,

(1)

In the model, S1 denotes the Extracellular concentration, S2 represents the Cytosolic concen-
tration, and S3 stands for Nuclear concentration. The parameter Ds signifies the diffusivity of
the drug through interstitial space, while kij denotes the transfer rate from compartment i to j.
The rates k

′
ij , which are primed in the first equation, are related to their unprimed counterparts

via k
′
ij = kij/F , where F signifies the extracellular fraction of the entire tissue. Additionally,

ki represents a rate of permanent removal from compartment i, and Vc denotes the volume of
a cell (further details are available in Sinek et al. (2008a); El-Kareh & Secomb (2003)). These
parameters encapsulate significant phenomena, including efflux pumps, cell permeability, and
DNA repair. Their values are derived from experimental data and lack certainty. Consequently,
we regard these inferred parameters as stochastic processes or random variables rather than
constants or deterministic functions. Therefore, it proves advantageous to conceptualize the
equations describing such models as stochastic rather than deterministic.

Here we will focus on the case where the probability space has a low dimensionality, that
means, the stochastic problem depends only on a small number of random variables. A possible
way to describe such random fields consists in using a Polynomial Chaos (PC) expansion (Wiener,
1938; Xiu & Karniadakis, 2002) or Karhunen Loéve (Loeve, 1977). The former uses polynomial
expansions in terms of independent random variables, while the latter represents the random
field as a linear combination of an infinite number of uncorrelated random variables.

The first main result of this paper concerns the existence and uniqueness of strong solutions
to system 1, when the imputed parameters are considered as random field rather than constants,
using Leray-schauder’s fixed point theorem .

The secondary objective of this paper involves investigating a multilevel approach that com-
bines Monte Carlo (MC) sampling with a ”pathwise” finite difference method (FDM) to estimate
the mean of stochastic solutions for 1. This approach, termed the multilevel Monte Carlo finite
difference method (MLMCFDM) for (1), is non-intrusive, requiring only repeated application of
existing solvers for input data samples, and is straightforward to implement and parallelize. Our
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analysis encompasses establishing convergence rates for both the MCFDM and MLMCFDM to-
wards the mean of the stochastic solution of (1). Additionally, we determine the optimal number
of MC samples necessary to minimize computational effort for a given error tolerance.

The remainder of this paper is organized as follows. In Section 2, we introduce the mathe-
matical problem and the main notations used throughout. In Section 3, we provide the existance
and uniqueness of the solution of our problem using Leray-schauder’s fixed point theorem. In
section 4 we focus on the discretization of our problem and we prove an a priori estimate for the
L2-error then we deduce the error analysis of the solution and use it to to derive the complexity
analysis of the MLMC method for our system of PDEs with random coefficients. In Section 5
we perform some numerical experiments to validate our error estimates. Finally, we summarize
the findings of this paper in Section 6.

2 Problem setting and notation

We consider the following stochastic problem: for k ∈ {1, 2, 3} find a random function Sk :
([0, T ]×D × Ω) −→ R satisfying almost surely(a.s)

∂S1
∂t = Ds∆S1 − k′12S1 +

k′21
Vc
S2,

∂S2
∂t = k12VcS1 − (k21 + k2 + k23)S2,
∂S3
∂t = k23S2 − k3S3,

(2)

subject to random initial conditions
S1(t = 0, x, ω) = S01(x, ω)
S2(t = 0, x, ω) = S02(x, ω)
S3(t = 0, x, ω) = S03(x, ω)

(3)

and boundary conditions

Si = 0 on ∂Ω for i = 1, 2, 3. (4)

Where D ⊂ R2 is a Lipschitz polyhedral domain, (Ω,F ,P) is the complete probability space
with the set of outcomes Ω, σ-algebra F and probability mesure P. For Y in (Ω,F ,P) we denote
by E(Y ) the expected value wich is defined by E(Y ) =

∫
Ω Y (ω)dP(ω) and these soboleve spaces

L2(D) and L2([0, T ], L2(D)) are equiped respectively with the norm

‖v‖L2(Ω,L2(D)) =

(∫
Ω

∫
D
|v(x, ω)|2dxdP(ω)

) 1
2

,

‖v‖L2([0,T ],L2(D)) =

(∫
[0,T ]

∫
D
|v(x, t)|2dxdt

) 1
2

,

In the rest of these work we make the following assumptions to the random coefficients Ds, ki,j ,
k
′
i,j , Vc, ki for i and j ∈ {1, 2, 3} .

H. There exist the constants such that for almost surely (a.s.):

0 < D−s < Ds(x, ω) < D+
s < +∞

0 < k−i,j < ki,j(x, ω) < k+
i,j < +∞

0 < k
′,−
i,j < k

′
i,j(x, ω) < k

′,+
i,j < +∞

0 < V −c < Vc(x, ω) < V +
c < +∞

0 < k−i < ki(x, ω) < k+
i < +∞
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for all x in D and ω in Ω.

Using the Karhunen-Loéve (KL) expansion (Loeve, 1977) for each parameter of our prob-
lem considered as stationary random field with continuous covariance function. The solution
corresponding to the system of stochastic partial differential equation (2) can be described by
just a finite number of random variables, that is, Sk(x, t, ξ) = Sk(x, t, ξ1(ω), ξ2(ω), . . . , ξN (ω))
where the random vector ξ = (ξ1(ω), ξ2(ω), . . . , ξN (ω)) has a joint probability density function
ρ : Γ −→ R+ that factorizes ρ(ξ) =

∏N
n=1 ρn(ξn) for all ξ ∈ Γ ⊂ RN with Γ = Γ1 × Γ2×, . . . ,ΓN ,

where Γn is the bounded image set of the random variables ξn(Ω). Then we can rewrite our
problem with an N−dimensional parameter as follows:

∂S1

∂t
(x, t; ξ) = Ds(x, ξ)∆S1(x, t; ξ)− k′12(x, ξ)S1(x, t; ξ) +

k
′
21(x, ξ)

Vc(x, ξ)
S2(x, t; ξ),

∂S2

∂t
(x, t; ξ) = k12(x, ξ)Vc(x, ξ)S1(x, t; ξ)−

(
k21 + k2 + k23

)
(x, ξ)S2(x, t; ξ),

∂S3

∂t
(x, t; ξ) = k23(x, ξ)S2(x, t; ξ)− k3(x, ξ)S3(x, t; ξ),

(5)

subject to random initial conditions
S1(x, t = 0; ξ) = S01(x, ξ)

S2(x, t = 0; ξ) = S02(x, ξ)

S3(x, t = 0; ξ) = S03(x, ξ)

(6)

and boundary conditions

Sk = 0 on ∂D for k = 1, 2, 3. (7)

3 Global existence and uniqueness of solutions

The main result of this section concerns the existence and uniqueness of bounded strong solution
to system 2-4 using the following fixed Point theorem ( Leray-schauder’s theorem):

Theorem 1. Let B be a Banach space and let T be a compact mapping of B× [0, 1] into B such
that T (x, 0) = 0 for all x ∈ B, suppose there exists a constant M such that

||x||B < M

for all (x, σ) ∈ B × [0, 1] satisfying x = T (x, σ), then the mapping T1 of B into itself given by
T1x = T (x, 1) has a fixed point.

Proof. see Gilbarg & Trudinger (2015) Theorem 10.3.

And the Gronwall lemma

Lemma 1. If h(t) satisfies ∂h(t)
∂t ≤ ah(t) + b some constant a 6= 0 and b, then we have

h(t) ≤ eat(h(0) +
b

a
), t ≥ 0.

3.1 Existence

In this subsection, we show the existence of solutions to the stochastic problem (2)–(4)

Theorem 2. Let D be a smooth bounded connected open subset of Rn( for n ∈ N − {0}), and
Ds, ki,j, k

′
i,j, Vc,ki for i and j ∈ {1, 2, 3} satisfy the assumptions H, and consider initial data
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(S01, S02, S03) ∈
(
L2(Ω, H1

0 (D))
)3

. Then, for each ω ∈ Ω the system 2-4 has a unique strong

solution (S1, S2, S3) ∈
(
L2([0, T ], L2(D))

)3
for all T > 0 such that

CT := Tk12Vc < 1.

C
′
T := T

k
′
21

Vc
< 1.

C
′′
T := Tk23 < 1.

Proof. We will prove, thanks to Leray-schauder’s theorem that for each ω ∈ Ω the system 2-4
has a solution:
To this end we define:

η := L2([0, T ], L2(D)) and X := η × η.

and
F : X× [0, 1]→ X via F(S1, S3, λ) := (λS1, λS3),

where (S1,S3) is given (in a unique way) by solving first an ODE (for S2 ), and then successively
(for S1 and S3, in that order) . More precisely, (S1,S3) is the (unique) solution on [0, T ]×Ω×D
of the system 

∂S1
∂t = Ds∆S1 − k′12S1 +

k′21
Vc
S2,

∂S2
∂t = k12VcS1 − (k21 + k2 + k23)S2,
∂S3

∂t = k23S2 − k3S3,

(8)

subject to random initial conditions
S1(w, t = 0, x) = S01(w, x)
S2(w, t = 0, x) = S02(w, x)
S3(w, t = 0, x) = S03(w, x)

(9)

and boundary conditions

Sk = 0 for k = 1, 3 and S2 = 0 on ∂Ω (10)

Note that F (S1, S3, 0) = 0.

Similarly as in Lemma 2,3 and Lemma 4 Saadeddine et al. (2020) we can prove that there is
C1 > 0 depending on (T,S01,S03, ki,j ,∇ki,j , ki,∇ki, k

′
i,∇k

′
i, Ds, Vc,∇Vc) such that for i = 1, 3

||Si||L2([0,T ],L2(D)) < C1

||∇Si||L2([0,T ],L2(D)) < C1∣∣∣∣∂Si

∂t

∣∣∣∣
L2([0,T ],L2(D))

< C1

then for i = 1, 3 we have Si ∈ H1([0, T ], L2(D)) ∩ L2([0, T ], H1(D)) then because H1(D) ↪→
L2(D) compactly and using theorem 2.4.1 Droniou (2001) we see that, the map F sends bounded
sets in X into relatively compact sets of X.

We now show that for any λ ∈ [0, 1] , F(., ., λ) is continuous from X to X. For that let
(S1, S3) , (Ŝ1, Ŝ3) and (λS1, λS3) = F(S1, S3, λ) , (λŜ1, λŜ1) = F(Ŝ1, Ŝ3, λ), we have

∂S2

∂t
= k12VcS1 − (k21 + k2 + k23)S2,

and
∂Ŝ2

∂t
= k12VcŜ1 − (k21 + k2 + k23) Ŝ2,
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then we have
∂(S2 − Ŝ2)

∂t
= k12Vc(S1 − Ŝ1)− (k21 + k2 + k23) (S2 − Ŝ2),

we multiply this equation by (S2 − Ŝ2) we obtain

∂(S2 − Ŝ2)2

∂t
≤ 2k12Vc(S1 − Ŝ1)(S2 − Ŝ2),

then using the inequality 2ab ≤ a2 + b2 for all (a, b) ∈ R2 we get the following inequality

∂(S2 − Ŝ2)2

∂t
≤ k12Vc

(
(S1 − Ŝ1)2 + (S2 − Ŝ2)2

)
,

for a fixed ω ∈ Ω we integrate this inequality over D and [0, s] for s ∈ [0, T ] we obtain∫ s

0

∂

∂t

∫
D

(S2 − Ŝ2)2 ≤ k12Vc
( ∫ s

0

∫
D

(S1 − Ŝ1)2 +

∫ s

0

∫
D

(S2 − Ŝ2)2
)
,

then

||S2(., s)− Ŝ2(., s)||2L2(D) ≤ k12Vc
( ∫ T

0

∫
D

(S1 − Ŝ1)2 +

∫ T

0

∫
D

(S2 − Ŝ2)2
)
,

and by integrating this inequality over [0, T ] we have

||S2 − Ŝ2||2L2([0,T ],L2(D)) ≤ Tk12Vc
(
||S1 − Ŝ1||2L2([0,T ],L2(D)) + ||S2 − Ŝ2||2L2([0,T ],L2(D))

)
,

we denote by CT := Tk12Vc and here we choise T small enough such that CT < 1 wet get

||S2 − Ŝ2||2L2([0,T ],L2(D)) ≤
CT

1− CT
||S1 − Ŝ1||2L2([0,T ],L2(D)) (11)

similarly we have
∂S1

∂t
= Ds∆S1 − k′12S1 +

k′21

Vc
S2 (12)

and
∂Ŝ1

∂t
= Ds∆Ŝ1 − k′12Ŝ1 +

k′21

Vc
Ŝ2 (13)

then we have

∂(S1 − Ŝ1)

∂t
= Ds∆(S1 − Ŝ1)− k′12(S1 − Ŝ1) +

k′21

Vc
(S2 − Ŝ2) (14)

Multiply this equation by (S1 − Ŝ1) we get

∂(S1 − Ŝ1)2

∂t
= 2Ds∆(S1 − Ŝ1)(S1 − Ŝ1)− 2k′12(S1 − Ŝ1)2 + 2

k′21

Vc
(S2 − Ŝ2)(S1 − Ŝ1) (15)

we obtain that

∂(S1 − Ŝ1)
2

∂t
≤ 2Ds∆(S1 − Ŝ1)(S1 − Ŝ1) + 2

k′21

Vc
(S2 − Ŝ2)(S1 − Ŝ1) (16)

we integrate this inequality over D and [0, s] for s ∈ [0, T ] and using the green formula and the
boundary condition and then using the inequality 2ab ≤ a2 + b2 we have that

||S1(., s)− Ŝ1(., s)||2L2(D) ≤
k′21

Vc
(||(S1 − Ŝ1)||2L2([0,T ],L2(D)) + ||S2 − Ŝ2||2L2([0,T ],L2(D))) (17)
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integrating this inequality over [0, T ] we have

||S1 − Ŝ1||2L2([0,T ],L2(D)) ≤ T
k′21

Vc
(||(S1 − Ŝ1)||2L2([0,T ],L2(D)) + ||S2 − Ŝ2||2L2([0,T ],L2(D))) (18)

then if we denote C
′
T := T

k′21
Vc

and chose T such that C
′
T < 1 we get

||S1 − Ŝ1||2L2([0,T ],L2(D)) ≤
C
′
T

1− C ′T
||S2 − Ŝ2||2L2([0,T ],L2(D)) (19)

finally using the inequality 11 we have

||S1 − Ŝ1||2L2([0,T ],L2(D)) ≤
C
′
T

1− C ′T

CT
1− CT

||S1 − Ŝ1||2L2([0,T ],L2(D)) (20)

Similarly we have that

||S3 − Ŝ3||2L2([0,T ],L2(D))) ≤
C”
T

1− C”
T

CT
1− CT

||S1 − Ŝ1||2L2([0,T ],L2(D)) (21)

where C”
T := Tk23.

It follow from (20)-(21) that for any λ ∈ [0, 1] , F(., ., λ) is continuous from X to X.We now
check the last assumption in Leray-schauder’s theorem for that we Consider therefore

Z := {(S1, S3) ∈ X : (S1, S3) = F(S1, S3, λ) where 0 < λ ≤ 1} (22)

and we will show that Z is bounded in X.

Note that if (S1, S3) ∈ Z ,then (S1, S3) = (λS1, λS3) where (S1,S3) solves (8) − (10),
therefore by multiplying the equations in (8)− (10) by λ, we obtain for (S1, S3) ∈ Z

∂S1
∂t = Ds∆S1 − k′12S1 + λ

k′21
Vc
S2,

∂S2
∂t = k12VcS1 − λ (k21 + k2 + k23)S2,
∂S3
∂t = λk23S2 − k3S3,

(23)

subject to random initial conditions
S1(x, ω, t = 0) = λS01(x, ω)
S2(x, ω, t = 0) = S02(x, ω)
S3(x, ω, t = 0) = λS03(x, ω)

(24)

In order to show that Z is bounded , we multiply the equation in (23) by 2S1, 2S2 and 2S3

respectively, then we integrate over D. The following equation is a direct result of using Green
formula and the boundary conditions

∂

∂t

∫
D
|S1|2dx+

∫
D

2Ds|∇S1|2dx+

∫
D

2k′12|S1|2 =

∫
D

2λ
k′21

Vc
S2S1dx

then
∂

∂t

∫
D
|S1|2dx ≤

∫
D

2λ
k′21

Vc
S2S1dx

and by Cauchy Schwartz inequality, it is easy to see that

∂

∂t

∫
D
|S1|2dx ≤

∫
D

(
(λ
k′21

Vc
)2|S1|2 + |S2|2

)
dx (25)
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≤
∫
D

(
(
k′21

Vc
)2|S1|2 + |S1|2

)
dx

because 0 < λ ≤ 1,Similarly ,we obtain

∂

∂t

∫
D
|S2|2dx ≤

∫
D

(
(k12Vc)

2|S1|2 + |S2|2
)
dx (26)

and
∂

∂t

∫
D
|S3|2dx ≤

∫
D

(
(k23)2|S3|2 + |S2|2

)
dx (27)

then according to (25)-(26) we have

∂

∂t

∫
D

( 3∑
i=1

|Si|2
)
(t)dx ≤ C1

∫
D

3∑
i=1

|Si|2
)
(t)dx

where

C1 = max{k23)2, k12Vc)
2,
k′21

Vc
)2, 3}

Applying Gronwall inequality yields

∫
D

( 3∑
i=1

|Si|2
)
(t)dx ≤ eC1T

∫
D

3∑
i=1

|S0i|2
)
dx

= eC1T
3∑
i=1

||S0i||2L2(D)

Then integrating this inequality over [0, T ] we get

||Si||2L2([0,T ],L2(D)) ≤ Te
C1T

3∑
i=1

||S0i||2L2(D) ≤ Te
C1TM = MT (28)

Because of for i ∈ {1, 2, 3}, S0i ∈ L2(D).

Note that the bounded (28) do not depend on λ ∈ [0, 1] , this means that the set Z defined
in (22) is bounded in X this shows that the last assumption of Leray-Schauder fixed theorem
holds, and therefore that the mapping F has a fixed point which satisfies as a consequence
system 23− 24, which give also the solution to the original system 2− 4 for (T > 0 small) .

Remark 1. The overall existence in time for all T
′
> 0 is obtained by taking as initial condition

the value at T thus we cover the horizon T
′
.

3.2 Uniqueness

Proposition 1. Let T > 0, under the assumption of 2, We consider two sets of initial data
(S01, S02, S03) and (S

′
01, S

′
02, S

′
03) in (L2(Ω, H1

0 (D)))3, and two sets of strong solution (in the
sense of the theorem 2) (S1, S2, S3) and (S

′
1, S

′
2, S

′
3) to system 2-4 (with corresponding initial

data) on [0, T ]× Ω×D, for each ω ∈ Ω there is C∗T > 0 such that

3∑
i=1

||Si − S
′
i ||L2([0,T ],L2(D)) ≤ C∗T

3∑
i=1

||S0i − S
′
0i||L2(D)
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Proof. Substracting the equation satisfied by S1 , S
′
1 and S2 , S

′
2 and finally S3 , S

′
3, we obtain

∂(S1−S
′
1)

∂t = Ds∆(S1 − S
′
1)− k′12(S1 − S

′
1) +

k′21
Vc

(S2 − S
′
2),

∂(S2−S
′
2)

∂t = k12Vc(S1 − S
′
1)− (k21 + k2 + k23) (S2 − S

′
2),

∂(S3−S
′
3)

∂t = k23(S2 − S
′
2)− k3(S3 − S

′
3),

(29)

as in the proof of the theorem we multiply the equation in (29) by 2(S1 − S
′
1), 2(S2 − S

′
2) and

2(S2 − S
′
2) respectively, then integrate over D then using the Chauchy-Schwarz inequality and

Applying Gronwall inequality yields∫
D

( 3∑
i=1

|Si − S
′
i |2(t)

)
dx ≤ eC1T

∫
D

( 3∑
i=1

|S0i − S
′
0i|2
)
dx

then integrate this last inequality over [0, T ] we obtain

3∑
i=1

||Si − S
′
i ||2L2([0,T ],L2(D)) ≤ C

∗
T

3∑
i=1

||S0i − S
′
0i||L2(D).

Note that uniqueness in theorem 2 is a direct consequence of proposition 1.

4 Numerical Analysis

4.1 Finite difference Method

Let the partition of space domain D = [0, l]2 and time interval [0, T ] be a uniform grids defined
as

xi = i∆x, i = 0, 1 . . . , Nx + 1,

yj = j∆y, j = 0, 1 . . . , Ny + 1,

tn = n∆t, n = 0, 1 . . . , Nt + 1,

where ∆x and ∆y are respectively the mesh sizes along the x and y directions, ∆t is the
time step size and Nx, Ny and Nt are three integers. Denote by Sn,ξ1,i,j , S

n,ξ
2,i,j and Sn,ξ3,i,j the

approximation of the Extra-cellular concentration field S1(tn, xi, yj , ξ), Cytosolic concentration
field S2(tn, xi, yj , ξ) and the Nuclear concentration field S3(tn, xi, yj , ξ) respectively. Also we

denote k
′,i,j,ξ
lk = k

′
lk(i∆x, j∆y, ξ), k

i,j,ξ
lk = klk(i∆x, j∆y, ξ), k

i,j,ξ
l = kl(i∆x, j∆y, ξ), V

i,j,ξ
c =

Vc(i∆x, j∆y, ξ) and Di,j,ξ
S = Ds(i∆x, j∆y, ξ) for any fixed random vector ξ.

The explicit FD scheme for equations (2) for any fixed random vector ξ is defined as follows

Sn+1,ξ
1,i,j =

(
1−∆t

(
k
′,i,j,ξ
12 +Di,j,ξ

s

( 2

∆x2
+

2

∆y2

))
Sn,ξ1,i,j +Di,j,ξ

S

∆t

∆x2

(
Sn,ξ1,i+1,j − S

n,ξ
1,i−1,j

)
+Ds

∆t

∆y2

(
Sn,ξ1,i,j+1 − S

n,ξ
1,i,j−1

)
+∆t

k
′,i,j,ξ
21

V i,j,ξc

Sn,ξ2,i,j ,

(30)

Sn+1,ξ
2,i,j =

(
1−∆t

(
ki,j,ξ21 + ki,j,ξ2 + ki,j,ξ23

))
Sn,ξ2,i,j +∆tki,j,ξ12 V i,j,ξc Sn,ξ1,i,j , (31)

Sn+1,ξ
3,i,j =

(
1−∆tki,j,ξ3

)
Sn,ξ3,i,j +∆tki,j,ξ23 Sn,ξ2,i,j . (32)

Using boundary conditions, the boundary values for scheme (30)-(32) can be derived explic-
itly as,

Sn,ξk,0,j = Sn,ξk,Nx+1,j = Sn,ξk,i,0 = Sn,ξk,i,Ny+1 = 0 for k = 1, 2, 3. (33)
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Finally, the initial values S0,ξ
k,i,j for k = 1, 2, 3 are easily given as

S0,ξ
k,i,j = S0k(xi, yi, ξ). (34)

For grid functions M := {Mi,j , i = 0, 1..., Nx + 1, j = 0, 1..., Ny + 1}, we introduce the following
norm

‖M‖l2(D) =
(Nx+1∑

i=0

Ny+1∑
j=0

(Mi,j)
2∆x∆y

)1/2
. (35)

We will assume throughout the rest of this work, in particular the theoretical analysis, that
the solution of the equations (2)-(4) acquires the following regularity property, for any fixed
random vector ξ, we have

Sk ∈ C1
(

[0, T ], C3(D̄)
)
, for k = 1, 2, 3. (36)

Theorem 3. Let ξ a fixed random vector and

Snk := {Sn,ξk,i,j , i = 0, 1..., Nx + 1, j = 0, 1..., Ny + 1} for k = 1, 2, 3 and n ≥ 0 (37)

the solution of the FD scheme (30)-(32). Suppose that the exact solutions S1, S2 and S3 satisfy
the regularity property (36). For any 0 ≤ i ≤ Nx + 1 and 0 ≤ j ≤ Ny + 1, if we assume the
following inequalities to hold true

2
∣∣∣1−∆t(ki,j,ξ21 + ki,j,ξ2 + ki,j,ξ23

)∣∣∣2 + 16∆t2
∣∣∣k′,i,j,ξ21

V i,j,ξc

∣∣∣2 + 4∆t2|ki,j,ξ23 |
2 ≤ 1, (38)

2
∣∣∣1−∆t(k′,i,j,ξ12 +Di,j,ξS

( 2

∆x2
+

2

∆x2

))∣∣∣2 + 16
∣∣∣Di,j,ξS

∆t

∆x2

∣∣∣2 + 32
∣∣∣Di,j,ξS

∆t

∆y2

∣∣∣2 + 4|∆tki,j,ξ12 V i,j,ξc |2 ≤ 1, (39)

2|1−∆tki,j,ξ3 |2 ≤ 1, (40)

∆t ≤ 1/16. (41)

Then, for any fixed T > 0 there exists a positive constant CT independent of ∆t, ∆x and ∆y
such that

max
0≤n≤NT

( 3∑
i=1

‖Si(tn)− Sni ‖2l2(D)

)1/2
≤ CT

(
∆t+∆x2 +∆y2

)
. (42)

Proof. Is similar to the proof in Saadeddine et al. (2020); Essarrout et al. (2022) just here the
diffusion coefficient is given as a random field.

4.2 Multilevel Monte Carlo Method

4.2.1 Monte Carlo finite difference method

Let S ∈ L2
(
Ω;L2 (D)

)
be a random field. The expectation E[S] is approximated by the sample

average EM [S], which is defined by

EM [S] :=
1

M

M∑
i=1

Sωi

where Sωi := S (ωi, ·) , i = 1, . . . ,M are independent identically distributed (i.i.d.) realizations
of the random field S. The following lemma give statistical error of the sample average EM [S] .

Lemma 2. Let S ∈ L2
(
Ω;L2 (D)

)
. Then, we have for any M ∈ N :

‖E[S]− EM [S]‖L2(Ω;L2(D)) ≤M
−1/2‖S‖L2(Ω;L2(D)).
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Proof. Considering that Sωi := S (ωi, ·) , i = 1, . . . ,M are i.i.d. samples of the random field S,
we have:

E
[
‖E[S]− EM [S]‖2L2(D)

]
= E

∥∥∥∥∥E[S]− 1

M

M∑
i=1

Sωi

∥∥∥∥∥
2

L2(D)

 =
1

M2
E

∥∥∥∥∥
M∑
i=1

(E[S]− Sωi)

∥∥∥∥∥
2

L2(D)


=

1

M2

M∑
i=1

E
[
‖E[S]− Sωi‖

2
L2(D)

]
=

1

M
E
[
‖E[S]− S‖2L2(D)

]
=

1

M

(
E
[
‖S‖2L2(D)

]
− ‖E[S]‖2L2(D)

)
≤ 1

M
E
[
‖S‖2L2(D)

]
Taking the square root of both sides of the inequality, we complete the proof.

It is difficult in practice to take samples from the random field S, since we do not know it
most of time. To overcome this difficulty, we choose samples from the FD approximation Sk,hL
for k ∈ {1, 2, 3} with hL and ∆tL , where L ∈ N is a given level, and ∆tL satisfy the CFL
condition ∆tL ≤ Ch2

L. We define the the classical MC estimator:

EM [Sk,hL ] :=
1

M

M∑
i=1

Sk,ωi,hL

where Sk,ωi,hL := Sk,hL (ωi, ·) , i = 1, . . . ,M are i.i.d. realizations of the random field Sk,hL .

Theorem 4. Let t ∈ [0, T ] and Suppose assumptions H hold, then for k ∈ {1, 2, 3} we have:

‖E[Sk]− EM [Sk,hL ]‖L2(Ω;L2(D)) ≤ CT
(
h2
L +M−1/2

)
where the constant CT is independent of hL and M .

Proof. By the triangle inequality, we have:

‖E[Sk]− EM [Sk,hL ]‖L2(Ω;L2(D))

≤ ‖E[Sk]− E [Sk,hL ]‖L2(Ω;L2(D)) + ‖E [Sk,hL ]− EM [Sk,hL ]‖L2(Ω;L2(D))

Using the Cauchy-Schwarz inequality, we have:

‖E[Sk]− E [Sk,hL ]‖L2(Ω;L2(D)) = ‖E [Sk − Sk,hL ]‖L2(Ω;L2(D)) ≤ E
[
‖Sk − Sk,hL‖L2(D)

]
≤ ‖Sk − Sk,hL‖L2(Ω;L2(D)) ≤ C

1
Th

2
L

where the third inequality follows from Theorem 3, and the CFL condtion ∆tL ≤ Ch2
L. For

term ‖E [Sk,hL ]− EM [Sk,hL ]‖L2(Ω;L2(D))′ applying Lemma 2, we obtain:

‖E [Sk,hL ]− EM [Sk,hL ]‖L2(Ω;L2(D)) ≤M
−1/2 ‖Sk,hL‖L2(Ω;L2(D)) .

Hence there is CT such that:

‖E[Sk]− EM [Sk,hL ]‖L2(Ω;L2(D)) ≤ CT
(
h2
L +M−1/2

)
The proof is complete.

Theorem 4 suggests that the total error outcome can be separated into two components:
statistical error with an order of M−1/2 and discretization error with an order of h2

L. To achieve
a fixed error level, the optimal number of samples M should be balanced with the spatial mesh
size hL, indicating:

M−1/2 = O
(
h2
L

)
= O

(
N−1
L

)
where NL = 22L. Hence, the total computational cost is:

Cost(L) = O
(
M ·NL

∆tL

)
.
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4.2.2 Multilevel Monte Carlo finite difference method

In this subsection, we provide a detailed explanation of the corresponding multilevel approach
the multilevel Monte Carlo finite difference method. This method relies on conducting Monte
Carlo sampling concurrently across different resolution levels of the finite difference scheme, with
varying numbers of MC samples denoted as Ml, dependent on each level.

To that end, for t ∈ [0, T ] and k ∈ {1, 2, 3} let (Sk,hl(·, t))
L
l=0 be a sequence of finite difference

approximations on grids with cell sizes hl = ∆xl = ∆yl and time steps ∆tl (subject to the CFL
condition ∆tl ≤ Ch2

l ) . Then, the random field Sk,hL for k ∈ {1, 2, 3} can be written as

Sk,hL =
L∑
l=1

(
Sk,hl − Sk,hl−1

)
where Sk,h0 = 0, l = 0, . . . , L. The linearity of the expectation operator yields:

E [Sk,hL ] =
L∑
l=1

E
[
Sk,hl − Sk,hl−1

]

We approximate E
[
Sk,hl − Sk,hl−1

]
by the MC estimator with Ml i.i.d. samples on sub-level l.

Hence, we estimate E[Sk] for k ∈ {1, 2, 3} by

EL [Sk,hL ] :=
L∑
l=1

EMl

[
Sk,hl − Sk,hl−1

]
where the samples over all levels are independent of each other.

Theorem 5. Let t ∈ [0, T ] and assumptions H hold, then for k ∈ {1, 2, 3}

∥∥E[Sk]− EL [Sk,hL ]
∥∥
L2(Ω;L2(D))

≤ CT

(
∆tL + h2

L +

L∑
l=1

M
−1/2
l (∆tl + h2

l )

)

where the constant CT is independent of hl and M, l = 1, . . . , L.

Proof. By the triangle inequality, we obtain:∥∥E[Sk]− EL [Sk,hL
]
∥∥
L2(Ω;L2(D))

=
∥∥E[Sk]− E [Sk,hL

] + E [Sk,hL
]− EL [Sk,hL

]
∥∥
L2(Ω;L2(D))

≤ ‖E[Sk]− E [Sk,hL
]‖L2(Ω;L2(D)) +

∥∥E [Sk,hL
]− EL [Sk,hL

]
∥∥
L2(Ω;L2(D))

≤ ‖E[Sk]− E [Sk,hL
]‖L2(Ω;L2(D)) +

∥∥∥∥∥
L∑
l=1

(
E
[
Sk,hl − Sk,hl−1

]
− EMl

[
Sk,hl

− Sk,hl−1

])∥∥∥∥∥
L2(Ω;L2(D))

:= I + II.

For estimating I, similarly to the proof of Theorem 3, we have:

‖E[Si]− E [Si,hL ]‖L2(Ω;L2(D)) ≤ CT
(
2h2

L + ∆tL
)
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For II, using the triangle inequality, we obtain:∥∥∥∥∥
L∑
l=1

(
E
[
Sk,hl − Sk,hl−1

]
− EMl

[
Sk,hl − Sk,hl−1

])∥∥∥∥∥
L2(Ω;L2(D))

≤
L∑
l=1

∥∥E [Sk,hl − Sk,hl−1

]
− EMl

[
Sk,hl − Sk,hl−1

]∥∥
L2(Ω;L2(D))

=

L∑
l=1

∥∥(E− EMl
)
[
Sk,hl − Sk,hl−1

]∥∥
L2(Ω;L2(D))

≤
L∑
l=1

M
−1/2
l

∥∥Sk,hl − Sk,hl−1

∥∥
L2(Ω;L2(D))

≤
L∑
l=1

M
−1/2
l

(
‖Sk − Sk,hl‖L2(Ω;L2(D)) +

∥∥Sk − Sk,hl−1

∥∥
L2(Ω;L2(D))

)
≤ CT

L∑
l=1

M
−1/2
l

(
∆tl + h2

l + h2
l−1

)
≤ CT

L∑
l=1

M
−1/2
l (∆tl + h2

l ).

Combing the estimates of I and II, we obtain the desired result:

∥∥E[Sk]− EL [Sk,hL ]
∥∥
L2(Ω;L2(D))

≤ CT

(
∆tL + h2

L +
L∑
l=1

M
−1/2
l (∆tl + h2

l )

)
.

The proof is complete.

Here, we present the error bounds of the multilevel Monte Carlo finite difference method
approximation for any distribution {Ml}Ll=1 across mesh levels. Similar to the single-level MC-
FD approximation, our focus lies on determining the optimal ratio of sample size to grid size
at each level. To attain the overall convergence rate, the selection of the sampling number Ml

is crucial. We aim to minimize the computational workload of the MLMCFDM while ensuring
convergence within a specified error tolerance ε > 0. This optimization process is elucidated in
the following theorem.

Theorem 6. Let t ∈ [0, T ] and suppose assumptions H hold and hl = 2−lh0. Then given an
error tolerance ε > 0, the optimal sample numbers Ml minimizing the computational work given
the error tolerance ε are given by:

Ml '
( 22/3L2

(ε− 2−2Lh2
0)2

)
2−2

(6l+1)
3 h4

0 (43)

where ' indicates that this is the number of sample, up to a constant which is independent of l
and L. And the total cost for computing EL[Sk] is:

Cost(L) := WFDM
MLMC(L) ≤ C L3

(ε− 2−2Lh2
0)2

. (44)

In particular, for ε = 2−2L+1h2
0 we have∥∥E[Sk]− EL [Sk,hL ]

∥∥
L2(Ω;L2(D))

≤ CTh2
L. (45)

and
Cost(L) ≤ CL3h−4

L . (46)
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Proof. As result of the theorem (5), for each t ∈ [0, T ] we have:

∥∥E[Sk]− EL [Sk,hL ]
∥∥
L2(Ω;L2(D))

≤ CT

(
∆tL + h2

L +
L∑
l=1

M
−1/2
l (∆tl + h2

l )

)

where the constant CT is independent of hl and M, l = 1, . . . , L. Then using the CFL condition
∆tL ≤ C∆x2

L we get:

∥∥E[Sk]− EL [Sk,hL ]
∥∥
L2(Ω;L2(D))

≤ C ′T (h2
L +

L∑
l=0

M
−1/2
l h2

l ).

So the approximation error scales as

ErL := C
′
T (h2

L +
L∑
l=0

M
−1/2
l h2

l )

know it is important to give an estimate of the computational work which is needed to com-
pute one approximation of the solution using the deterministic FDM and how it increases with
respect to mesh refinement. By computational work, we understand the number of floating
point operations performed when executing an algorithm and we assume that this in turn is
proportional to the runtime of the algorithm. For a bounded domains D ⊂ R2 the number of
grid cells scales as 1/h2 where h = ∆x = ∆y. For the deterministic FDM the number of floating
point operations per time step and the number of cells in the spatial domain are proportional ,
hence the computational work can be bounded by C∆t−1h−2. Considering the CFL condition
(∆t ≤ Ch2), we thus obtain the computational work estimate

WFDM(h) ≤ Ch−4. (47)

Given the Multilevel Monte Carlo finite difference method at level l, Ml deterministic finite
difference approximations are computed, each necessitating effort as described in (47). Conse-
quently, the cumulative effort of the MLFDM at level L is determined.

WFDM
MLMC(L) = C

L∑
l=0

Mlh
−4
l .

Know if we use a Lagrange multiplier λ, we get for

L : = WFDM
MLMC(L)− λ(ε− ErL)

=

L∑
l=0

Ml2
4lh−4

0 − λ
(
ε− (2−2Lh2

0 +

L∑
l=0

M
−1/2
l 2−2lh2

0)
)

the first order conditions
∂L
∂Ml

= 0, l = 0, 1, . . . , L

then

∂L
∂Ml

:= 0 ⇐⇒ 24lh−4
0 − λ(

1

2
M
−3/2
l 2−2lh2

0) = 0

⇐⇒Ml = λ2/32−2
(6l+1)

3 h4
0.

Using the constraint

ErL = ε,
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we get

ε = 2−2Lh2
0 +

L∑
l=0

M
−1/2
l 2−2lh2

0.

= 2−2Lh2
0 +

L∑
l=0

(λ2/32−2
(6l+1)

3 h4
0)−1/22−2lh2

0.

Then

ε− 2−2Lh2
0 =

L∑
l=0

(
λ2/32−2

(6l+1)
3 h4

0

)−1/2
2−2lh2

0.

= λ−1/3
( L∑
l=0

2
(6l+1)

3 2−2l
)
.

That give

λ =
2L3

(ε− 2−2Lh2
0)3

,

then, we obtain

Ml ≈
( 2L3

(ε− 2−2Lh2
0)3

)2/3
2−2

(6l+1)
3 h4

0

Ml ≈
( 22/3L2

(ε− 2−2Lh2
0)2

)
2−2

(6l+1)
3 h4

0.

Finally, we have the following bound of overall work at level L :

WFDM
MLMC(L) ≤ C

L∑
l=0

Mlh
−4
l

≤ C
L∑
l=0

( 22/3L2

(ε− 2−2Lh2
0)2

)
2−2

(6l+1)
3 hh4

024lh−4
0

≤ C L3

(ε− 2−2Lh2
0)2

.

The bounded 45 and 46 is a direct result using ε = 2−2L+1h2
0.

5 Numerical simulation

In this section, we numerically verify the assertion of Theorem 6, specifically the order of con-
vergence 45 and the upper bound on the computational cost 46. The problem is then solved
using two distinct sets of determined parameters, presented in Table 2. The results obtained
are subsequently compared to those of our proposed method, as illustrated in Figure 5. For this
purpose, we consider the following system

∂S1
∂t = Ds∆S1 − k′12S1 +

k′21
Vc
S2 + f1

∂S2
∂t = k12VcS1 − k21S2 − k2S2 − k23S2 + f2
∂S3
∂t = k23S2 − k3S3 + f3

where the parameters k′12, k
′
21, Vc, k12, k21, k23, k2, k3 and Ds are functions of the spatial variable

(x, y) and the random vector ξ. Functions f1, f2 and f3 are added source terms used to construct
exact solutions to check the convergence. The exact solution is given by

S1(x, y, t, ξ) = xy(1− x)(1− y) exp
(
Ds +

(
k′12 + k′21

)
(x, y, ξ)

)
exp (−2Vc(x, y, ξ)t)

S2(x, y, t, ξ) = xy(1− x)(1− y) exp ((k12Vc − k21 − k2) (x, y, ξ)) exp (−2k23(x, y, ξ)t)

S3(x, y, t, ξ) = xy(1− x)(1− y) exp (k23(x, y, ξ) + x+ y) exp (−2k3(x, y, ξ)t)
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The parameters are modeled as random functions, varying within an interval around their
experimental values given in Table 2. In other words, they fluctuate randomly within a defined
range centered on the experimentally observed values, as follows:

Vc(x, y, ξ) =
∣∣520× 10−6 + 10−4 × sin ((ξ1 + ξ2 + ξ3)x− (ξ4 + ξ5 + ξ6) y)

∣∣ ,
k12(x, y, ξ) = |1.48− 0.1× sin ((ξ1 + ξ2 + Z3)x− (ξ4 + ξ5 + ξ6) y)| ,
k′12(x, y, ξ) = k12(x, y, ξ)/0.48,

k21(x, y, ξ) = |0.071 + 0.1× cos ((ξ1 + ξ2 + ξ3)x− (ξ4 + ξ5 + ξ6) y)| ,
k′21(x, y, ξ) = k21(x, y, ξ)/0.48,

k2(x, y, ξ) = |1.55 + 0.5× sin ((ξ1 + ξ2 + ξ3)x+ 2 (ξ4 + ξ5 + ξ6) y)| ,
k23(x, y, ξ) = |11.8 + 0.1× sin ((ξ1 + ξ2 + ξ3)x− 2 (ξ4 + ξ5 + ξ6) y)| ,
k3(x, y, ξ) = |0.95 + 0.2× sin ((ξ1 + ξ2 + ξ3)x− (ξ4 + ξ5 + ξ6) y)| ,
Ds(x, y, ξ) =

∣∣0.003 + 10−2 × sin ((ξ1 + ξ2 + ξ3)x− (ξ4 + ξ5 + ξ6) y)
∣∣ ,

The variables ξp(1 ≤ p ≤ 6) are uniform independent random variables on [0, 1] .

Consider sequences {Thl}
L
l=0, where L ranges from 1 to 5, representing rectangular meshes

over the domain D = [0, 1]× [0, 1] and time domain [0, 1] (i.e T = 1) . We set the mesh size h0

of Th0 to h0 = 2−2. Finally, for any given value of L, we derive the sequence {Ml}Ll=0 indicating
the number of samples per refinement level using 43.

In Table 1, we present the needed sequences {Ml}Ll=0, for L = 1, . . . , 4, used in computing
EL [Sk,hL ] for k ∈ {1, 2, 3}, where Ml is the number of samples for a refinement level with mesh
size hl = 2−lh0, ∆tl = 0.01× h2

l and ε = 2× hL. Consistent with the choice of Ml in Theorem
6 we see that the number of samples Ml decreases with increasing ` for a fixed final level L.

Table 1: The sequences {Ml}Ll=0, for L = 1, . . . , 4, used in computing EL [Sk,hL
] for k ∈ {1, 2, 3},

where Ml is the number of samples over a refinement level with mesh size hl = 2−(2+l)

L M0 M1 M2 M3 M4

1 160 12
2 2089 263 71
3 383612 23971 1498 193
4 6501159 406324 25360 12873 1103

we shows in Figure 2 the optimal number of sample for each level according to the formula
given in (43) for different values of ε = 0.01, 0.001, and 0.0001 , the optimal number of sample
in each level l in order to achieve the desired accuracy.

Figure 3 presents the plot of the CPU-time (in seconds) for the computation of EL [Sk,hL ]
versus the number Nl ≈ h−2

l with mesh size hL = 2−(2+L) for L = 1, . . . , 4. It is clear from the
figure that the computational cost is asymptotically bounded by O

(
L3N2

L

)
as L → ∞. this

confirms the theoretical cost bound in 46

In addition we report the error associated with EL [Sk,hL ] in Figure 4. We can see clearly
that the best fitting curve for the error behaves like O

(
h2
L

)
as L→∞. This confirms the bound

45 in Theorem 6.
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Figure 2: Optimal number of sample paths per level l, i.e.,Ml , in MLMC method for ε ∈
{10−2, 10−3, 10−4} with L = 4

Figure 3: The computational cost upper bound for the MLMC estimator EL [Sk,hL
] for k ∈ {1, 2, 3}.

We plot the cost (CPU-time in seconds) of computing EL [Sk,hL
] versus the number of degrees of

freedom NL when hL = 2−(L+2) for L = 1, . . . , 4

Figure 4: the error associated with EL [Sk,hL
] and O

(
h2
L

)
versus h−1

L

To assess the performance of the proposed method, its numerical results are compared to
those obtained from experimental values found in the literature. To achieve this, the problem
is solved using two distinct sets of deterministic parameters, as outlined in Table 2. The initial
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concentration of the drug in the three compartments is represented by the following expressions:
For all (x, y) ∈ [0, 1]2 and ξ ∈ Γ :

S01(x, y, ξ) = 0.06(sin(x2 + y2))2,

S02(x, y, ξ) = 0.06(cos(x2 + y2))2,

S03(x, y, ξ) = 0.06(1− sin(x2 + y2))2.

The results obtained are then compared to those from the proposed method, as illustrated
in Figure 5.

Figure 5 illustrates the general behavior of the variation in drug concentration across the
three compartments over time for two deterministic cases and the stochastic case. The adjusted
parameters for the two cases shown in Table 2 are reasonably accurate, but lack precision due
to variations between case 1 and case 2, as clearly shown by the blue and yellow curves. To
address this issue, we use the Multilevel Monte Carlo finite difference method at level L = 4 ,
which produces the result represented by the green curve.

Table 2: Valued of parameter (from Sinek et al., (2008b); Troger et al., (1992); Lavasseur et al.
(1998) and associated references)

Parameter Description Case 1 Case 2
value reference value reference

VC Cell volume (fL cell−1) 520 Levasseur et al. (1998). 520 Levasseur et al. (1998).
F Interstitial Fraction 0.48 - 0.48 -
Ds Drug diffusivity (µm2 min−1) 30E3 - 30E3 -
k2 Inactivation rate (min−1) 1.7 - 1.7 -
k12 Drug uptake (min−1) 0.043 Sinek et al. (2008b). 0.00545 Troger et al. (1992).
k21 Drug efflux (min−1) 0.00197 - 0.0004 -
k23 Drug-DNA binding (min−1) 0.00337 - 0.06242 -
k3 Drug-DNA repair (min−1) 0.00785 - 0.02402 -
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Figure 5: Comparison of the stochastic and the determinate results. The concentration-versus-time
curve for the drug. The curves represent the concentration of the drug using the MLMC method at

level L = 4 (green) and the parameters given in case 1 (Blue) and case 2 (Yellow) of Table 2.

6 Conclusion

In this paper, we have considered a Mathematical model of drug transport in the tumor, where
the model parameters and the initial data are uncertain. we proved the existence and uniqueness
of the random solution of this model in any dimension under some assumption.

Numerically to approximate the mean of the solution of our problem, we have proposed the
Monte Carlo and the Multi-level Monte Carlo method coupled with finite difference method.
then we proved the convergence rate estimates and established a cost bound for the Multi-
level Monte Carlo estimator in 2D space . We have presented numerical experiments to verify
our theoretical results concerning convergence rates and the bound cost of the multilevel Monte
Carlo finite difference method. we also compared between the stochastic and determinate solving
process.In the future, we aim to design an even more powerful solver by combining stochastic
methods and machine learning to solve this type of problem.
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